Nonlinear lattice models for biopolymers: Dynamical coupling to a ionic cloud and application to actin filaments - CASYS Access content directly
Journal Articles Discrete and Continuous Dynamical Systems - Series S Year : 2011

Nonlinear lattice models for biopolymers: Dynamical coupling to a ionic cloud and application to actin filaments

Abstract

This paper is a first attempt to derive a qualitatively simple model coupling the dynamics of a charged biopolymer and its diffuse cloud of counterions. We consider here the case of a single actin filament. A zig-zag chain model introduced by Zolotaryuk et al [28] is used to represent the actin helix, and calibrated using experimental data on the stiffness constant of actin. Starting from the continuum drift-diffusion model describing counterion dynamics, we derive a discrete damped diffusion equation for the quantity of ionic charges in a one-dimensional grid along actin. The actin and ionic cloud models are coupled via electrostatic effects. Numerical simulations of the coupled system show that mechanical waves propagating along the polymer can generate charge density waves with intensities in the pA range, in agreement with experimental measurements of ionic currents along actin.
Fichier principal
Vignette du fichier
ferreira2010.pdf (392.72 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00765666 , version 1 (26-08-2019)

Identifiers

Cite

Cynthia Ferreira, Guillaume James, Michel Peyrard. Nonlinear lattice models for biopolymers: Dynamical coupling to a ionic cloud and application to actin filaments. Discrete and Continuous Dynamical Systems - Series S, 2011, 4 (5), pp.1147-1166. ⟨10.3934/dcdss.2011.4.1147⟩. ⟨hal-00765666⟩
154 View
44 Download

Altmetric

Share

Gmail Facebook X LinkedIn More