Density of automorphic points in deformation rings of polarized global Galois representations - Département de mathématiques Access content directly
Journal Articles Duke Mathematical Journal Year : 2022

Density of automorphic points in deformation rings of polarized global Galois representations

Abstract

Conjecturally, the Galois representations that are attached to essentially self-dual regular algebraic cuspidal automorphic representations are Zariski-dense in a polarized Galois deformation ring. We prove new results in this direction in the context of automorphic forms on definite unitary groups over totally real fields. This generalizes the infinite fern argument of Gouvêa–Mazur and Chenevier and relies on the construction of nonclassical p-adic automorphic forms and the computation of the tangent space of the space of trianguline Galois representations. This boils down to a surprising statement about the linear envelope of intersections of Borel subalgebras.
Fichier principal
Vignette du fichier
1811.09116.pdf (480.04 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-04455776 , version 1 (18-03-2024)

Identifiers

Cite

Eugen Hellmann, Christophe Margerin, Benjamin Schraen. Density of automorphic points in deformation rings of polarized global Galois representations. Duke Mathematical Journal, 2022, 171 (13), pp.2699--2752. ⟨10.1215/00127094-2021-0080⟩. ⟨hal-04455776⟩
23 View
2 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More