Investigating the effects of different natural molecules on the structure and oligomerization propensity of hen egg-white lysozyme
Abstract
The formation of amyloid aggregates is the hallmark of systemic and neurodegenerative diseases, also known as amyloidosis. Many proteins have been found to aggregate into amyloid-like fibrils and thus process is recognized as general tendency of polypeptides. Inhibition of protein aggregation and fibril formation is thus one of the important strategies in the prevention and treatment of such disease. There is a growing interest of identification of small molecules mainly natural compounds that can prevent or delay amyloid fibril formation. In this work, we report the effect of various compounds from different groups on the amyloid fibrillation of hen egg white lysozyme, a model protein for amyloid formation. Herein, a range of biophysical techniques have been employed in order to establish a systematic approach to study the effect of candidate inhibitors on amyloid aggregation. Results demonstrated that the strategy used show that the different techniques are complimentary in order to elucidate a complete in vitro picture of the effect of the used compounds on HEWL aggregation. Moreover, compared to the data obtained by other groups for the inhibition of lysozyme fibril formation, this work provides new insights into the structural changes (local, secondary, oligomeric, fibrillar structures) undergone by HEWL during aggregation in the presence and absence of inhibitors.
Keywords
Domains
Life Sciences [q-bio]Origin | Files produced by the author(s) |
---|