Molecular beam epitaxial growth of multilayer 2D-boron nitride on Ni substrates from borazine and plasma-activated nitrogen - Université de Versailles Saint-Quentin-en-Yvelines Access content directly
Journal Articles Nanotechnology Year : 2022

Molecular beam epitaxial growth of multilayer 2D-boron nitride on Ni substrates from borazine and plasma-activated nitrogen

Ivy Colambo
Jose Avila
  • Function : Author
Pavel Dudin
Julien Barjon

Abstract

2D boron nitride (2D-BN) was synthesized by gas-source molecular beam epitaxy on polycrystalline and monocrystalline Ni substrates using gaseous borazine and active nitrogen generated by a remote plasma source. The excess of nitrogen atoms allows to overcome the thickness self-limitation active on Ni when using borazine alone. The nucleation density and the shape of the 2D-BN domains are clearly related to the Ni substrate preparation and to the growth parameters. Based on spatially-resolved photoemission spectroscopy and on the detection of the π plasmon peak, we discuss the origin of the N1s and B1s components and their relationship with an electronic coupling at the interface. After optimization of the growth parameters, a full 2D-BN coverage is obtained, although the material thickness is not evenly distributed. The 2D-BN presents a granular structure on (111) oriented Ni grains, showing a rather poor cristallographic quality. On the contrary, high quality 2D-BN is found on (101) and (001) Ni grains, where triangular islands are observed whose lateral size is limited to ~20 µm.
Fichier principal
Vignette du fichier
2D-BN article v3_1 Hal.pdf (4.71 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03818640 , version 1 (04-11-2022)

Identifiers

Cite

Jawad Hadid, Ivy Colambo, Jose Avila, Aexandre Plaud, Christophe Boyaval, et al.. Molecular beam epitaxial growth of multilayer 2D-boron nitride on Ni substrates from borazine and plasma-activated nitrogen. Nanotechnology, 2022, 34 (3), pp.035601. ⟨10.1088/1361-6528/ac99e5⟩. ⟨hal-03818640⟩
89 View
48 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More